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Understanding the underlying mechanisms of COVID-19 progression
and the impact of various pharmaceutical interventions is crucial for
the clinical management of the disease. We developed a comprehen-
sive mathematical framework based on the knownmechanisms of the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion, incorporating the renin−angiotensin system and ACE2, which the
virus exploits for cellular entry, key elements of the innate and adap-
tive immune responses, the role of inflammatory cytokines, and the
coagulation cascade for thrombus formation. The model predicts the
evolution of viral load, immune cells, cytokines, thrombosis, and oxy-
gen saturation based on patient baseline condition and the presence
of comorbidities. Model predictions were validated with clinical data
from healthy people and COVID-19 patients, and the results were
used to gain insight into identified risk factors of disease progres-
sion including older age; comorbidities such as obesity, diabetes,
and hypertension; and dysregulated immune response. We then
simulated treatment with various drug classes to identify optimal
therapeutic protocols. We found that the outcome of any treatment
depends on the sustained response rate of activated CD8+ T cells
and sufficient control of the innate immune response. Furthermore,
the best treatment—or combination of treatments—depends on the
preinfection health status of the patient. Our mathematical frame-
work provides important insight into SARS-CoV-2 pathogenesis and
could be used as the basis for personalized, optimal management of
COVID-19.
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COVID-19 has created unprecedented challenges for the health
care system, and, until an effective vaccine is developed and

made widely available, treatment options are limited. A challenge to
the development of optimal treatment strategies is the extreme
heterogeneity of presentation. Infection with severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) results in a syndrome
that ranges in severity from asymptomatic to multiorgan failure and
death. In addition to local complications in the lung, the virus can
cause systemic inflammation and disseminated microthrombosis,
which can cause stroke, myocardial infarction, or pulmonary emboli
(1–4). Risk factors for poor COVID-19 outcome include advanced
age, obesity, diabetes, and hypertension (5–13).
Computational analyses can provide insights into the transmis-

sion, control, progression, and underlying mechanisms of infec-
tious diseases. Indeed, epidemiological and statistical modeling
has been used for COVID-19, providing powerful insights into
comorbidities, transmission dynamics, and control of the disease
(14–17). However, to date, these analyses have been population
dynamics models of SARS-CoV-2 infection and transmission or
correlative analyses of COVID-19 comorbidities and treatment
response. Simple viral dynamics models have been also developed
and used to predict the SARS-CoV-2 response to antiviral drugs
(18, 19). These models, however, do not explicitly consider the bi-
ological or physiological mechanisms underlying disease progression

or the time course of response to various therapeutic interventions,
and only a few more-sophisticated models have been developed
toward this direction (20, 21).
Several therapies targeting various aspects of COVID-19

pathogenesis have been proposed and have either completed—
or are currently being tested in—clinical trials (22). Despite
strong biologic rationale, these treatments have generally produced
conflicting results in the clinic. For example, trials of antiviral ther-
apies (e.g., remdesivir) have been mixed: The original trial from
China failed (23), a subsequent trial in the United States led to
approval of remdesivir in the United States and other countries (24),
and the recent results of the World Health Organization Solidarity
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trial again show no benefit (25). Other antiviral drugs alone or in
combination are also showing promise (26).
Other potential treatments include antiinflammatory drugs

and antithrombotic agents. Because of the systemic inflamma-
tion seen in many patients, antiinflammatory drugs have been
tested, including anti-IL6/IL6R therapy (e.g., tocilizumab, sil-
tuximab) and anti-JAK1/2 drugs (e.g., barcitinib). It is not clear
whether these drugs will be effective as stand-alone treatments,
particularly after the recent failure of tocilizumab in a phase III
trial (1, 27–29). In addition, given that a common complication of
COVID-19 is the development of coagulopathies with microvas-
cular thrombi potentially leading to the dysfunction of multiple
organ systems (2, 3), antithrombotic drugs (e.g., low molecular
weight heparin) are being tested. Recognizing the interactions of
COVID-19 with the immune system (30), the corticosteroid
dexamethasone has been tested, showing some promising results.
Given the large range of patient comorbidities, disease severities,
and variety of complications such as thrombosis, it is likely that
patients will have heterogeneous responses to any given therapy,

and such heterogeneity will continue to be a challenge for clinical
trials of unselected COVID-19 patients (31).
Here, we developed a systems biology-based mathematical

model to address this urgent need. Our model incorporates the
known mechanisms of SARS-CoV-2 pathogenesis and the po-
tential mechanisms of action of various therapeutic interventions
that have been tested in COVID-19 patients. In previous work,
we have exploited angiotensin receptor blockers (ARBs) and
angiotensin converting enzyme inhibitors (ACEis) for the im-
provement of cancer therapies and developed mathematical
models of the renin−angiotensin system in the context of cancer
desmoplasia (32–35). Using a similar approach, we developed a
detailed model that includes lung infection by the SARS-CoV-2
virus and a pharmacokinetic/pharmacodynamic (PK/PD) model
of infection and thrombosis to simulate events that take place
throughout the body during COVID-19 progression (Fig. 1 and
SI Appendix, Fig. S1). The model is first validated against clinical
data of healthy people and COVID-19 patients and then used to
simulate disease progression in patients with specific comorbid-
ities. Subsequently, we present model predictions for various
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Fig. 1. Schematic of the detailed lung model. The model incorporates the virus infection of epithelial and endothelial cells, the RAS, T cells activation and
immune checkpoints, the known IL6 pathways, neutrophils, and macrophages, as well as the formation of NETs, and the coagulation cascade. The lung model
is coupled with a PK/PD model for the virus and thrombi dissemination through the body.
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therapies currently employed for treatment of COVID-19 alone
or in combination, and we identify protocols for optimal clinical
management for each of the clinically observed COVID-19
phenotypes.

Model Description
The model includes SARS-CoV-2 infection, the renin angio-
tensin system (RAS), inflammatory and antiinflammatory cyto-
kines, innate and adaptive immune cells, and factors involved in
the coagulation cascade (Fig. 1). SARS-CoV-2 enters the cell by
docking to ACE2, a key component of the RAS. ACE2 can be
membrane bound or soluble, and it regulates inflammation by
converting angiotensin (Ang) II to Ang 1–7 and Ang I to Ang 1–9;
as opposed to Ang I and Ang II, which lead to inflammation. Ang
1–7 and Ang 1–9 have antiinflammatory effects. Intracellular virus
initiates inflammatory pathways through toll-like receptors and
NFκB, which produces interferons and other inflammatory cyto-
kines. The viral antigens, along with inflammatory cytokines, cause
activation of naïve T cells, creating virus-specific T effector cells.
T cell activation is controlled by viral antigen strength and the
presence of PD-L1/PD-1 inhibition (36). We combine inflamma-
tory cytokines into a single variable, but explicitly account for IL6
production via the trans pathway in epithelial and endothelial cells
and the canonical pathway in immune cells. In the presence of
inflammatory cytokines and virus, neutrophils can produce neu-
trophil extracellular traps (NETs).
Because the virus can infect endothelial cells, we also consider

viral dissemination via the blood stream, and the possibility of
systemic infection and thrombosis. We include the major organs
in a PK/PD model, with physiological blood flow patterns ex-
plicitly modeled. Infection of endothelial cells, combined with
high levels of inflammatory cytokines in the plasma, can result in
thrombosis. Damage to virally infected endothelial cells and the
production of NETs can exacerbate the thrombosis, and micro-
thrombi can enter the blood stream to accumulate in other or-
gans, including the brain, heart, and lung. We use a simplified
model of the coagulation pathways, assuming that formation of
microthrombi is proportional to the number of infected endo-
thelial cells, the presence of neutrophil NETs, and the level of
inflammatory cytokines. Transport of oxygen from the alveolar
space to the blood vessels in the lung is calculated using a
modified diffusion model (37).

Results
Model Validation with Data of Healthy People and Various COVID-19
Phenotypes. Model predictions were validated with clinical data
from healthy humans and severe COVID-19 patients (38–40).
Fig. 2 A–D presents the comparison showing agreement between
model predictions and clinical data for Ang II, neutrophils, CD8+

T cells, and IL6 levels. Fig. 2E further validates model predictions
for the evolution of IL6 in COVID-19 patients admitted to the
Intensive Care Unit of Massachusetts General Hospital. The use
of retrospective patient data was deemed exempt by our institu-
tional review board. Informed consent was waived (41).
Subsequently, we focused on the clinically observed pheno-

types of COVID-19. We used the model to predict the time
evolution of critical disease variables, namely, the virus load,
levels of IL6 and other proinflammatory cytokines, the formation
of microthrombi in the lung; the numbers of neutrophils, mac-
rophages, and activated cytotoxic CD8+ T cells; and the blood
oxygen saturation (SpO2). The COVID-19 patient phenotypes
considered include young patients (age < 35 y), older patients
(age > 65 y) who more frequently require hospitalization, and
female patients, as well as patients with comorbidities such as
hypertension, obesity, and diabetes, and patients with a dysre-
gulated immune response, whose condition is characterized by
high levels of proinflammatory cytokines (Fig. 3). SI Appendix,
Table S2 presents the model parameters that were modified from

the baseline values to account for these various patient pheno-
types. To test the sensitivity of the model predictions, a parametric
analysis of these model parameters was also performed by varying
all parameters involved in each phenotype either together or
separately (SI Appendix, Figs. S2–S4).
In all phenotypes, the viral load increases during early lung

infection, with divergent trajectories seen after day 5, depending
on the levels of activated T cells. In younger patients (age < 35 y)
with a healthy immune system, a sustained recruitment of T cells
is observed along with a reduction in viral load and inflamma-
tion, as well as a decrease in neutrophils and macrophages. All
these effects cause a significant reduction in the formation of
thrombi and restoration of oxygenation.
In general, the simulations resulting in poor outcome were due

to increased baseline inflammation or more active innate immune
response combined with less effective adaptive immunity. This was
the case—in varying degrees—for older patients and those with
diabetes, obesity, hypertension, and dysregulated immunity
(“hyperinflamed”; see SI Appendix, Table S2 for the parameters
varied in each population). In the latter case, the adaptive immune
response is intact and clears the virus, but the innate immune
response is sustained, perpetuating inflammation, thrombosis, and
hypoxemia. Furthermore, the progression of the disease relates to
the levels of initial viremia, and low levels of viral load can lead to
virus clearance even for older, at-risk patients (SI Appendix, Fig.
S5) (42).
An outstanding question is why males tend to have more se-

vere COVID-19 disease compared with females (43). Proposed
mechanisms include the higher CD4/CD8 T cell ratio in females
(44) and androgen-induced differences in susceptibility to viral
entry into the cells due to higher TMPRSS2 levels in males (45).
To simulate COVID-19 in an older female, we decreased the
production of naïve T cells and the rate of virus entry into the
cells (46). The simulations predict lower viral load compared
with the older males, with correspondingly less inflammation and
hypoxemia. These results suggest that reduced viral entry into
cells due to lower TMPRSS2 level can explain the improved
outcomes in females—even if the adaptive immune response is
not as vigorous (43).

Efficacy of Current Treatments on COVID-19 Progression. To identify
optimal treatment protocols, we simulated the effects of the var-
ious treatments currently being investigated for COVID-19. We
first simulated a patient of age >65 y (assumed to have baseline
inflammation and impaired T effector cell function) and per-
formed simulations of various treatments given at early (day 3,
SpO2∼92%) and late (day 7, SpO2 < 90%) stages of the disease.
For the purpose of the simulations, day 0 is the time of arrival of
the virus in the lung, so significant symptoms are expected starting
around day 3. Simulating treatment on day 3 represents early
treatment (e.g., upon hospital admission); later treatment (day 7)
could be due to delayed diagnosis/hospital admission or in re-
sponse to disease progression. Treatments that were considered
include heparin (anticoagulant), immune checkpoint inhibition
(ICI), antiviral therapy, dexamethasone, ARBs, ACEi, hrACE2,
anti-IL6, and anti-IL6R treatment. SI Appendix, Table S2 sum-
marizes the model parameters that were modified from their
baseline values to account for the different treatments. The se-
verity of disease was primarily assessed based on the degree of
hypoxemia and thrombus formation. The dynamics of the disease
progression are shown in SI Appendix, Figs. S6–S9, and the values
at the last day of the simulation (day 20) are summarized in
Table 1.
Unsurprisingly, we found that heparin decreases thrombus

formation and improves oxygenation when administered during
early stages of disease but has no effect on viral load. ICI is also
predicted to improve outcomes when initiated early. The anti-
viral therapy is effective in reducing viral load in early stages, but
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is less effective in reducing thrombus formation and improving
oxygenation. Interestingly, dexamethasone is helpful when star-
ted later, but early administration can prevent the production of
activated T cells, making it difficult to reduce the viral load. This
mirrors the data from the Randomised Evaluation of COVID-19
Therapy trial, where dexamethasone was demonstrated to
improve outcomes in patients requiring ventilatory support, but

not in those with milder symptoms. These simulations also identify
IL-6 directed therapies as potential therapeutics that may benefit
patients if started early in the disease course. As far as inhibitors of
the RAS are concerned, both ARBs and ACEis show modest
benefits only when administered early. Furthermore, the model
predicts that delayed administration of hrACE2 (on day 7 rather
than day 3) will improve outcome. This is because the model

Fig. 2. Validation of the model. (A–D) Model comparison with clinical data for healthy, uninfected people and for severe COVID-19 patients taken from
pertinent studies (38–40). (E) Comparison of model predictions with IL6 clinical data from patients hospitalized at the Massachusetts General Hospital. The
data were taken at day 1 and day 3 from the time of patient’s admission to the Intensive Care Unit (ICU).
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assumes that the virus has already infected the lung at the start of
the simulations, so hrACE2 has little influence on spread of virus
within the lung; instead, its major activity in the simulations is to
decrease cytokine production and thrombosis in the later stage of
the disease.

Optimizing Clinical Management of COVID-19 by Combining Therapies.
Because of the diverse mechanisms involved in COVID-19 path-
ogenesis, clinical management currently involves combination of
multiple therapies in an effort to optimize therapeutic outcomes.
To investigate the effects of combination treatments, we per-
formed simulations combining various therapeutic approaches in
pairs, using the best treatment time for each single treatment
(i.e., day 3 or day 7; Table 1). We also accounted for older patients
and those with comorbidities and dysregulated immune responses.
Fig. 4 presents a summary of the combined treatments for older
patients (>65 y); the results for the other COVID-19 phenotypes
are presented in SI Appendix, Tables S3–S6. According to the
model predictions, effective clinical management of older patients
(with some baseline inflammation and impaired adaptive immu-
nity) involves combination of heparin or ICI (day 3) with dexa-
methasone (day 7), which can improve oxygenation and decrease
microthrombosis significantly; however, these treatments have
little effect on viral load. For patients with obesity or hyperten-
sion, the combination of heparin with dexamethasone is again
beneficial compared to other treatments. In addition, the use of
anti-IL6/anti-IL6R therapy could also be considered in both of
these patient populations. For diabetic patients, the combination
of heparin or ICI with dexamethasone can improve oxygenation
and thrombus formation similar to the other scenarios. Other
treatments predicted to be beneficial for this phenotype are the
combination of dexamethasone or ICI with hrACE2 or anti-IL6/
anti-IL6R. These combination therapies in diabetic patients can
treat hypoxemia and coagulation but also reduce the viral load.
For patients with dysregulated immune systems, early blockade of
IL6 combined with dexamethasone on day 7 gives optimal results;
anti-IL6/anti-IL6R combined with antiviral therapy and/or hepa-
rin could also be considered.

Discussion
COVID-19 is a complex disease that can affect multiple organs
and is characterized by extremely heterogeneous presentation.
As with other critical care syndromes such as septic shock and
non-COVID-19 acute respiratory distress syndrome, disease se-
verity results from a complex interplay of viral replication,
adaptive and maladaptive immune response, and patient
comorbidities. Such heterogeneity is a challenge to the development
of effective therapies, as candidate approaches may elicit different
responses depending on the phase of illness or patient comorbid-
ities. Because of the complexity of the underlying mechanisms and
interactions among the various components involved in the disease,
the response of COVID-19 patients to any treatment is not intui-
tive, and, for that reason, we developed a highly sophisticated
mathematical model to provide insights into the underlying mech-
anisms and predict optimal treatment strategies.
A main conclusion of our study is that disease progression and

outcome of any treatment largely depends on the response rate
of activated CD8+ T cells and subsequent control of the innate
immune system response. A sustained activation of CD8+ T cells
along with the control of the populations of neutrophils and
macrophages is associated with a decrease in viral load and in-
flammation. This, in turn, will improve arterial oxygen saturation
levels due to the decreased endothelial damage and micro-
thrombosis, and limited formation of NETs (47). In line with
these conclusions about the underlying mechanisms of the disease,
our model predicts that antiviral and antiinflammatory drugs that
were first employed to treat COVID-19 might have limited effi-
cacy, depending on the stage of the disease progression. Fur-
thermore, our simulations suggest that an optimal approach would
be to enhance the adaptive immune response in the early stages
while limiting harmful inflammation in the later stages of the
disease. We also found that addition of heparin to the treatment
regimen of COVID-19 can improve therapeutic outcomes. In case
of patients with comorbidities (obesity, diabetes, hypertension) or
dysregulated immunity, the treatment regimen could further in-
clude antiinflammatory drugs (e.g., anti-IL6/anti-IL6R) and RAS

Table 1. Summary of model predictions for the therapeutic outcome of currently employed treatments initiated either in the
beginning (day 3) of the disease or later (day 7)

Favorable→unfavorable.
The table presents the results at the end of the simulation (day 20) for an old (>65 y old) male patient. Values have been normalized to the corresponding

initial values, except for SpO2. Dex., dexamethasone.
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inhibitors and hrACE2 for the diabetic patients, in particular.
Interestingly, the fact that progression of viral infections can be
generalized as the result of interactions between CD8+ T cells and
antigens has been shown by mathematical models focused on
other types of viruses, such as hepatitis C, HIV-1, and simian HIV
(48–51).
The activation of T cells also played a critical role in the pro-

gression of previous coronavirus infections, such as SARS-CoV
and Middle East respiratory syndrome CoV, and the severity of
these infections has been associated with type I interferon (52, 53).
Moreover, the preventive effects of interferon are being tested for
SARS-CoV-2 infection (Clinical Trial NCT04320238), although
results have been mixed (25). Our model includes the generation
of interferon by infected cells, and this interferon affects T cell
activation as well as virus replication (SI Appendix, Eqs. S34, S36,
S55, S60). To investigate the effect of interferon, we simulated
interferon modulation treatment for the case of the older, at-risk
male patient (>65 y). Our model predicts a protective effect of the
treatment, which was slightly better when treatment was initiated
at day 3 compared to day 7 (SI Appendix, Table S7).
Our mathematical modeling framework is subject to certain

limitations. The model is able to account for the currently known

components and interactions involved in disease pathogenesis but
results in a large number of model parameters. Most of the values
of these parameters were taken from the literature. However, be-
cause COVID-19 is a new disease, many of the parameter values
are not known yet. For these parameters, it was necessary to make
reasonable assumptions about their values, as summarized in SI
Appendix, Table S1. We further validated the model predictions
quantitatively with available clinical data for healthy and infected
humans and qualitatively based on clinical observations for the
different COVID-19 phenotypes. Our mathematical framework
can be further refined as new mechanisms and more data become
available and can be adapted for other diseases similar to COVID-
19. Furthermore, our model is deterministic, and thus it does not
incorporate uncertainties in the values of the model parameters, or
the initial values employed. The main objective of this work was to
provide a mathematical framework to characterize the multifac-
eted implications of COVID-19 on the human body. Uncertainty
can be incorporated into the model by choosing the initial values of
the model variables or the model parameters through a distribu-
tion; the distribution is sampled a number of times, and a Monte
Carlo sampling method is employed for the solution of the equa-
tions. Also, the model only accounts for the temporal evolution of
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Fig. 4. Summary of model predictions for the therapeutic outcome of combined treatments for male patients > 65 y old. The tables present results at the end
of the simulation (day 20). Values have been normalized to the corresponding initial values except for SpO2. Dex., dexamethasone.
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the infection and not for spatial effects in the lung or other organs,
which will be considered in future studies.
Another limitation of the model is that it does not account for

the humoral immune response, although circulating antibodies
are important in viral control in COVID-19 (54). Future model
development should include this additional complexity of anti-
viral immunity, as well as modulation of the immune system by
vaccines. Also, the model does not account for adverse effects of
the various treatments considered in this study, which could af-
fect the therapeutic outcome. For instance, heparin use might be
associated with hemorrhage, and RAS inhibitors can reduce
blood pressure. Even though incorporation of adverse effects
would be important, they would not affect the basic conclusions
of the study and were omitted to avoid adding further complexity
to the model. In conclusion, this study presents a mathematical
representation of the known mechanisms of COVID-19 and
could be utilized by the scientific community as a useful tool for
further understanding the disease and investigating the benefits
of treatments on a patient-specific basis.

Materials and Methods
A detailed description of model equations, the description and values of
model parameters, and the solution strategy are provided in SI Appendix. The
mathematical model consists of two components: a detailed model of lung
infection by the SARS-CoV-2 virus and a PK/PD model of COVID-19 infection
and thrombosis to simulate events that happen throughout the body
(Fig. 1). The lung model incorporates the infection of epithelial and endo-
thelial cells by the SARS-CoV-2 virus through ACE2 modulation and activity,
the release of proinflammatory cytokines, and the entire RAS. Cytokines that
are central to COVID-19 (e.g., IL-6) are explicitly accounted for in the model,
incorporating all known signaling pathways, such as the canonical and trans
signaling pathway of IL-6 and its interaction with IL-6r and soluble IL-6r.
Additional innate immune cells, specifically, neutrophils and macrophages,
are incorporated into our model along with the interaction of immune cells
with viral particles and infected cells as well as the formation of NETs. The
model incorporates the recruitment of cytotoxic T cells by the infected cells
and by IL-6 as well as the virus killing of cytotoxic T cells. In addition, the
model accounts for the role of immune cells in modulating the expression of
proinflammatory cytokines (55). Subsequent events, such as the impairment
of the vascular network owing to the infection of endothelial cells by the
SARS-CoV-2 virus and the resulting changes in blood oxygenation, are
also included.

To study how the virus affects systemic events, such as inflammation and
thrombosis, we coupled the lungmodel with a PK/PDmodel of viral infection.
The PK/PD model represents the major organs of the body as compartments
connected in an anatomical manner by the blood and lymphatic circulations

(SI Appendix, Fig. S1). The organ compartments are then further subdivided
into vascular and extravascular subcompartments, and each organ has a
draining lymph node compartment. Briefly, the main transport processes for
the biochemical species include 1) convective and diffusive transport across
capillary walls, 2) reversible, nonsaturable, nonspecific binding in the ex-
travascular compartments, and 3) reversible, and saturable, specific binding
of virus to endothelial cells, and probabilistic infection of bound cells. Any
infected cell generates microthrombi, which enter the circulation and can
accumulate in target organs including brain, heart, and lung. Each species
can be produced, bound, or degraded within each compartment. Blood flow
is distributed according to known flows through each organ, and the overall
mass balance allows calculation of the concentration of each species in each
compartment over time. The PK/PD model includes the following key pro-
cesses involved in the trafficking of viruses: 1) transport from the lung via
the systemic circulation, 2) entry into endothelial cells via binding to ACE2, 3)
entry into the cell and replication, and 4) exit from the cell and entry into
the blood circulation. The important outputs of the model are the level of
thrombosis in each organ and the viral load. When coupled with the lung
model, we are able to analyze the dynamics of these readouts in light of
local lung pathologies and predicted cytokine levels.

The model consists of a set of partial and ordinary differential equations.
The values of themodel parameters are summarized in SI Appendix, Table S1.
We simulated COVID-19 infection and progression within a period of 20 d.
The model does not account for the first stages of virus infection of the
upper respiratory tract but from the time the virus has infected the lungs.
Therefore, day 0 of the simulations corresponds to the initiation of lung
infection. For the formulation of the model and the solution of the equa-
tions, the commercial finite elements software COMSOL Multiphysics v.5.5
was used. The computational finite element mesh employed in the present
study consisted of 2,440 elements resulting in 1,201,044 degrees of freedom.
The solution was tested and found to be mesh independent, the PARDISO
solver was selected for the solution of the model equations, and the total
solution time was ∼30 min.

Code Availability. The COMSOL code is available at Zenodo (56).

Data Availability.All data supporting the findings of this study are available in
the paper and SI Appendix.
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